Practice of Epidemiology Doubly Robust Estimation of Causal Effects

نویسندگان

  • Michele Jonsson Funk
  • Daniel Westreich
  • Chris Wiesen
  • Til Stürmer
  • M. Alan Brookhart
  • Marie Davidian
چکیده

Doubly robust estimation combines a form of outcome regression with a model for the exposure (i.e., the propensity score) to estimate the causal effect of an exposure on an outcome. When used individually to estimate a causal effect, both outcome regression and propensity score methods are unbiased only if the statistical model is correctly specified. The doubly robust estimator combines these 2 approaches such that only 1 of the 2 models need be correctly specified to obtain an unbiased effect estimator. In this introduction to doubly robust estimators, the authors present a conceptual overview of doubly robust estimation, a simple worked example, results from a simulation study examining performance of estimated and bootstrapped standard errors, and a discussion of the potential advantages and limitations of this method. The supplementary material for this paper, which is posted on the Journal ’s Web site (http://aje.oupjournals.org/), includes a demonstration of the doubly robust property (Web Appendix 1) and a description of a SAS macro (SAS Institute, Inc., Cary, North Carolina) for doubly robust estimation, available for download at http://www.unc.edu/~mfunk/dr/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death: Supplementary material

Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death: Supplementary material MICHELLE SHARDELL∗,1, GREGORY E HICKS, LUIGI FERRUCCI Department of Epidemiology and Public Health, University of Maryland 660 West Redwood Street Baltimore, Maryland 21201, U.S.A. Department of Physical Therapy, University of Delaware 303 McKinly Lab Newark, Delawa...

متن کامل

Doubly Robust Causal Inference With Complex Parameters

Semiparametric doubly robust methods for causal inference help protect against bias due to model misspecification, while also reducing sensitivity to the curse of dimensionality (e.g., when high-dimensional covariate adjustment is necessary). However, doubly robust methods have not yet been developed in numerous important settings. In particular, standard semiparametric theory mostly only consi...

متن کامل

Bounded , efficient and doubly robust estimation with inverse weighting

Consider estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on a previous nonparametric likelihood approach and propose new doubly robust estimators, which have desirable pr...

متن کامل

Bounded, Efficient, and Doubly Robust Estimation with Inverse Weighting

Consider the problem of estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on the nonparametric likelihood approach of Tan and propose new doubly robust estimators. These es...

متن کامل

Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death.

Motivated by aging research, we propose an estimator of the effect of a time-varying exposure on an outcome in longitudinal studies with dropout and truncation by death. We use an inverse-probability weighted (IPW) estimator to derive a doubly robust augmented inverse-probability weighted (AIPW) estimator. IPW estimation involves weights for the exposure mechanism, dropout, and mortality; AIPW ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011